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The misalignment of a magnet in a beam line will cause 

an alteration of the beam envelope at any later point in that 

beam line. The position of a misaligned magnet may be described 

in terms of six coordinates, three translational and three 

rotational. The effect of a misalignment on a single particle 

trajectory is derived to first order, including bilinear terms. 

A bilinear effect is one which affects the beam line focusing 

characteristics, but not the central ray, such as the effect of 

rotating a quadrupole about its axis. The, effect on the beam 

envelope is calculated, both for a known magnet displacement and 

for an uncertain magnet position. The formalism has been included 

in the computer program TRANSPORT. 1 
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1. Introduction 

The effects of magnet misalignments are an important 

consideration at every stage of beam line design, installation, 

and operation. The selection of the optical mode, determination 

of surveying accuracy requirements, and the choice of correcting 

elements are all dependent on misalignment information. 

Two types of misalignment information are typically needed. 

To assess the general effect of misalignments in the design stage, 

one needs to know the change in beam position and beam line 

transmission characteristics due to uncertainties in the position 

of each magnetic element in each seperate coordinate. Secondly, 

to provide for correcting elements, one needs to know the effect 

on the beam of specific misalignments. 

In the following we derive a method of determining the 

effect of magnet misalignments on a particle beam. We first 

define a reference system i.? which to express misalignments. 

Then we determine the effect of a misalignment on individual 

particle trajectories. Finally we express the effect on the beam 

envelope which describes the ensemble of particles comprising the 

beam. 

II. Particle Trajectorv Coordinates 

To specify the position and direction of a particle at any 

instant in time, we employ a coordinate system defined with respect 

to the beam line reference trajectory. 2 The z axis is taken to 

point along the reference trajectory: the x axis points to the 

left, and the y axis points up. The position and direction of 
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the particle trajectory can then be given by a vector with six 

components 

/X 

X’ 

Y 
x= 

Y' 

II 

6 ) 

(1) 

The quantities x, x', y, and y' are respectively the horizontal 

displacement and slope, and vertical displacement and slope of 

the ray with respect to the central reference trajectory. It is 

the longitudinal seperation of the ray from a ray which enters 

the beam line at the same time as the given ray and travels 

along the central trajectory. 6 is the fractional momentum 

deviation of the particle from the design momentum of the beam 

line. 

When a charged particle passes through a perfectly aligned 

magnet, the transformation may be described to first order by the 

matrix equation2 

X(1) = R X(O) (2) 

The sets of six coordinates X(O) and X(1) give the particle 

position and direction at the entrance and exit faces of the 

magnet respectively. 

When a magnet is misaligned, the central trajectory of the 

magnet is no longer continuous with the central trajectory of 
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the beam line (see figure 1 below). In particular, at both 

the entrance and exit faces, the reference coordinate system 

external to the magnet no longer coincides with the reference 

coordinate system internal to the magnet (see figure 2 below). 

The misaligned and aligned reference coordinate systems are 

related by a translation of origin plus a rotation of axes. 

We continue to use X(0) and X(l) to denote respectively 

the entrance and exit face ray coordinates in the aligned 

coordinate systems. We use a subscript f to denote the ray 

coordinates Xf(0) and Xf(1) expressed in the misaligned 

reference coordinate systems. To first order the ray coordinates 

in the misaligned coordinate systems may be expressed in terms 

of those in the aligned coordinate systems by an affine 

transformation 

X,(O) = So X(0) - Do (3) 

Xf(l) = S1 X(1) - D1 (4) 

The symbols So and Sl represent six by six matrices, whose 

form will be derived below. The two six-vectors Do and D1 

are translations in the six dimensional space of particle 

coordinates. The three vectors B. and El formed from the 

displacement coordinates (x, y, and z) of Do and D1 give the 

displacement due to the misalignment of the origins of the 

reference coordinate systems. These two three-vectors are 

shown in figure 1. 
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111. Magnet Misalignment Coordinates 

The alignment of a rigid magnet has six degrees of freedom, 

three translational and three rotational. These are conveniently 

represented by the six quantities 

m= 

~‘1 

6x I 
eX 

6Y 

8 
Y 

62 

gz I 

(5) 

where 6x, 6y, 6z are the displacements in the x, y, and z 

directions, and Ox, 8 
Y' 

and 13s are the rotations about the 

x, y. and z axes respectively. The origin of the xyz. coordinate 

system, called the pivot, is the point about which the 

misalignments are measured. If the pivot point is located at 

some point on the reference trajectory, the x, y, and z axes 

of the alignment coordinate system are taken to coincide with 

the x, y, and z axes of the beam line reference coordinate 

system. 

The misalignments form a mathematical group, which is the 

Euclidean group in three dimensions. This group is non-commutative 

and the order in which the misalignments are imposed is important 

if terms of higher order than linear are included. In practice, 

however, misalignment values are sufficiently small so that a 

first-order approach is justified. For these reasons, we consider 

. . 
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only those terms which are of first order in the misalignment 

parameters. 

IV. Transformation of Particle Trajectory Coordinates 

We now temporarily delete the indices 0 and 1 indicating 

the entrance and exit magnet faces respectively, and consider 

the effect of a misalignment at a single magnet face. Later 

we will combine the results from the two faces to obtain the 

net effect of a misalignment. 

When the components of the misalignment vector m are 

small, we may expand the matrix S and the centroid displacement 

D in the misalignment parameters. Retaining only first-order 

terms we have 

S=I+Bm (6) 

The six by six matrix A rep.resents a transformation from the 

misalignment parameters to the particle coordinates. I is the 

identity matrix, and B represents a set of six matrices, one 

for each of the misalignment parameters. A single six by six 

matrix Em is obtained by multiplying each of the six matrices 

by its corresponding misalignment parameter and summing the 

results. In terms of the misalignment parameters, the particle 

coordinates in the misaligned reference coordinate system now 

take the form 

X f=x - Am + BXm (7) 
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To derive the forms of the matrices A and B, we consider 

separately the effect of each of the various misalignment 

parameters on each of the ray coordinates. First we derive 

the effect on the ray coordinates of the various misalignments 

as expressed in the coordinate system of the aligned magnet 

face. Then we will express the misalignment of the magnet 

face in terms of the misalignment parameters about the pivot 

point. 

A rigid translation of the magnet face will change the 

XI Y, and z coordinates of a ray by the amount of the displacement. 

The z translation will also introduce a short drift distance 

(positive or negative length) at the magnet face, and will 

contribute to B via the transformation matrix of that drift 

space. 

To determine the effect of a rotational misalignment we 

form from the ray angles x' ( = dx/dz) and y' ( = dy/dz) and 

the number 1 ( = dz/dz), a three-vector (x',y',l) giving the 

ray direction. We let TX, iT 
Y' 

qs be the three rotational 

components of the misalignment vector. Then, incl.uding only 

first-order effects, this three-vector is transformed as 

X’ 

1 I y’ = 

,1 f i -ez 1 % 1 B Y -Fx 4 5x 1 Y 1 
X’ I ‘i Y’ (8) 

\1 I 
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In the misaligned coordinate system the ray angles become 

x; = x’ - KY + iTz,’ 

yi = y’ + “, - eZx’ (9) 

Thus coordinate rotations about the aligned magnet face x and 

y axes only shift the ray angles. A rotation about the z axis 

mixes x' and y'. 

If we let m represent the misalignment parameters relative 

to the aligned magnet face coordinate system, and x and g 

be the corresponding matrices, then equation (6) holds using the 

barred quantities. Using the results derived above, the matrices 

A and !% are now given by 

i 

100000 

0 0 010 0 

ElZ5 = IT 345 = l 

El,, = E,,, = - B316 = - K,,, = -1 

(10) 

(111 

The first two indices for B correspond to the ray coordinates 

and the third corresponds to the misalignment parameters. All 

other elements of is are zero. 
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In order to express the quantities m in terms of m, the 

misalignment parameters at the pivot point, we need two items. 

First is the orthogonal matrix 0 giving the three translational 

coordinates at the magnet face in terms of those at the pivot 

point 

xf =0x 
P (12) 

Also needed is the three-vector P which gives the position of 

the origin of the aligned magnet face coordinate system, in 

the coordinate system of the pivot. 

We now define two three-vectors which give the translational 

m 
X 

and rotational mg parts of the misalignment vector m. We 

also do the same for fii. Then the contribution of mx to iiix 

is given by equation (11). so that 

iii 
X 

= 0 mx (13) 

The contribution of mx to ze is zero, since parallel translations 

do not affect angles. 

The displacement of a point due 

pivot is given by the vector product 

to a rotation about the 

of the rotation vector and 

the position vector of the point. Therefore the displacements 

of the magnet face iii, due to a rotation at the pivot are given 

;“, = 0 jmgXP) (14) 

The orthogonal transformation indicated by the matrix 0 gives 

the misalignment parameters in the magnet face coordinate 
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system. Finally the transformation of rotational misalignment 

parameters is again given by equation (111, so that 

ii e = 0 me (15) 

V. Evaluation of the Relevant Matrices 

We choose the pivot to be the origin of the aligned magnet 

entrance face coordinate system. Therefore we have 

BO 
=g (16) 

For the exit face, the matrix 0 transforms from the 

aligned entrance face coordinate system to the aligned exit 

face coordinate system. The vector P gives the position of 

the origin of the aligned exit face coordinate system in the 

aligned entrance face coordinate system. In figure 1 it is 

the vector which reaches from A to B. 

For the exit face of a bending magnet we therefore have 

( 

cosa 0 sine 

o= 0 10 

-sina 0 cosa 

( 

- p(l - cosa) 

P= 0 

psina 

i 

i 

(17) 

(18) 
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where p is the radius of curvature of the central trajectory 

and a is the total bend angle. 

Al and Bl 

We then derive for the matrices 

Al = 

cosa 0 0 

0 0 0 

0 -sina 1 

0 -cosa 0 

-sina 0 0 

0 0 0 

sina 

1 

0 

0 

-p(l-cosa) 

0 

sina 0 

0 0 

0 -p(l-cosa) 

0 -sina 

cosa 0 

0 0 

B(L)121 = B(1) 341 = - sine 

B(1)l24 = B(l)344 = - ~(1 - coso) 

B(1)l25 = B(1)345 = case 

~(1)~~~ = B(1)242 = - B(l)312 = - B(l)422 = sine 

B(l)136 = B(1)246 = - B(1)316 = - B(1)426 = - cosa (20) 

(19) 

All other elements of B(1) are zero. 

To calculate A1 and Bl for a quadrupole, we take the 

limit a+0 with ap = I,, the length of the magnet being held 
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fixed. Then we have 

i 

10 

0 0 

0 -L 
Al = 

0 ,-1 

I 

0 0 
0 0 

0 

0 

0 

0 

0 

0 

(21) 

and Bl = if as given above. 

VI. Effect on the Beam Envelope 

To first order, the coordinates at the misaligned magnet 

exit face are related to those at the misaligned entrance face 

by a transfer matrix, so that 

or 

Xf(l) = R Xf(0) (22) 

X(1) - Aim + BIX(l)m = R X(O) - Aom + BoX(0)m [ 1 (23) 

If we solve for X(1) and discard all terms in m of order 

higher than first, we then derive 

X(1) = R X(O) + Al 
C 

- RAo] m + [RBo - BIR]X(0)m (24) 

For later use we define two new matrices F and G given by 

F = Al - RAo 

G = RBo - BIR (25) 
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so that 

x(1) = RX(O) + Fm + GX(O)m (26) 

in ensemble of particles in a beam line is often 

represented as a six-dimensional ellipsoid. The equation of 

this ellipsoid may be written in matrix form as follows: 

xTcl-lx = 1 

where X T is the transpose of the coordinate vector X, and s 

is a real, positive definite, symmetric matrix. The square 

roots of the diagonal terms of the sigma matrix are a measure 

of the beam size in each coordinate. If the centroid of this 

ellipsoid does not fall on the central trajectory, then one 

needs to specify~this centroid position also. The sigma matrix 

then gives the beam dimensions as measured about the centroid. 

The beam envelope entering a misaligned magnet may be 

described in terms of the position in the aligned coordinate 

system of the beam centroid and the sigma matrix. For a known 

misalignment m, the centroid is transformed as in equation (25). 

The sigma matrix is transformed by 

o(l) = Ra(0)RT + Go(0)mRT + Ro(0)mTGT 

+ Gu(0)mmTGT (28) 

where the superscript T indicates a transpose. 

For an uncertainty in position we define a covariance 



-14- 

matrix (mmT), measuring the distribution of possible magnet 

positions. The sigma matrix, which represents the beam 

envelope entering the magnet may contain contributions from 

both the original beam and from the uncertainty in positions 

of previous magnets. We assume there is no correlation of 

errors of positioning between any two magnets. The beam 

centroid is unaffected by an uncertainty in position. The 

transformed sigma matrix becomes 

u(l) = Ra(0)RT + F(mmTFT + Go(0)(mmT)GT (29) 

If the original sigma matrix is zero, then the resultant 

sigma matrix represents the uncertainty in the beam centroid 

upon leaving the magnet. If the original sigma matrix encloses 

a region of phase space, then the resultant sigma matrix 

represents the envelope of possible particle trajectories, 

including both the undisturbed sigma matrix and the effects of 

the misalignment. 

VII. Implementation 

This model for misalignments has been implemented in the 

computer program TP.ANSP0RT.l An arbitrary misalignment m may 

be imposed on any magnet or section of the beam line. 

Misalignments may also be nested. The effect of all misalignments 

may then be added into the sigma matrix and thereby be traced 

through the system. Alternatively, the effects of separate 

components of the misalignment vector on individual magnets 
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may be stored in a table. This table is traced through the 

beam line and may be compared with the unperturbed sigma 

matrix at any later point. Details of implementation are 

described in the TRANSPORT manual. 



-16- 

References 

1. K. L. Brown, F. Rothacker, D. C. Carey, Ch. Iselin, 
NAL Report No. 91, SLAC Report No. 91, CERN 73-16 (1973). 

2. K. L. Brown, SLAC Report No. 75 (1972). 



r 

-17- 

w> 
$5 
EL= 
w-0 
zia 
a: 



% iz E % f 
zz 
kz LIJU s l-z WQ 2% 2% 


